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Transportation networks are inevitably selected with reference to their global cost which depends on the
strengths and the distribution of the embedded currents. We prove that optimal current distributions for a
uniformly injected d-dimensional network exhibit robust scale-invariance properties, independently of the
particular cost function considered, as long as it is convex. We find that, in the limit of large currents, the
distribution decays as a power law with an exponent equal to �2d−1� / �d−1�. The current distribution can be
exactly calculated in d=2 for all values of the current. Numerical simulations further suggest that the scaling
properties remain unchanged for both random injections and by randomizing the convex cost functions.
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I. INTRODUCTION

Finding efficient ways of distributing �or collecting� mat-
ter injected through a given region, spanned, e.g., by a regu-
lar lattice, from �at� a unique source �sink� is relevant to a
variety of problems arising both for natural and artificial sys-
tems. The main mechanisms that are known to achieve a
capillary distribution are by diffusion or through a network-
like structure providing a near uniform spatial supply �drain-
age�, or a combination of them. Network arrangements, of
this kind, are observed in many living organisms, like for
instance circulatory and lymphatic systems in animals or xy-
lem and roots in vascular plants, and are also widely em-
ployed in artificial systems such as electrical or hydraulic
transmissions and fluvial basins �1–5�.

Certainly, one wonders what is the basic selection prin-
ciple that favors, say, treelike versus looping network struc-
tures, in view of the widespread occurrence of both forms in
nature and elsewhere �6,7� �5�. To that end, it has been pre-
viously shown that treelike structures emerge as local
minima of global energy expenditure in networks whose
transportation cost is physically constrained to be a concave
function, such as in the case of river networks �8�.

Transportation costs generally depend on the strength of
currents and on network topology. The best known example
is the electrical resistor network �9,10�: consider a square
lattice where a resistor is placed at every bond between each
pair of nearest-neighbor nodes. Each node is externally sup-
plied by a unit flux. If a sink collects all the currents, one is
capable of controlling the current fluxes in all bonds by as-
signing the potential differences between pairs of nodes. The
total cost in the transportation—the dissipated power—is
proportional by Ohm’s law to the sum of the square of cur-
rents: E��Ib��=�b�Ib�2. Optimal resistor networks are thus ob-
tained by setting the potentials in order to minimize the total
transportation cost. The most immediate way to generalize
the resistor network case is to replace the exponent “2” by a
generic exponent ��0.

The case ��1 has been characterized exactly
�4,8,11–13�. It was shown there that the cost function admits
many local minima corresponding to configurations with cur-
rents present only on the bonds of spanning trees �8�. The
case �=1 /2 exhibits scaling behavior akin to river networks
�4,11,12,14�.

The case �=1 is related to the Voter model �15�, mass
aggregation �16–19�, directed sandpile models �20�, and
Kleiber’s law of metabolic scaling of living organism �21�.
Recently optimal transportation networks with a global con-
straint have been studied in a variety of contexts �22,23�,
where different topologies of the optimal transportation net-
work arising in the cases ��1 and ��1 have been investi-
gated also by Bohm and Magnasco �23�.

The case ��1 is an example of convex transportation
costs. Important real-world examples are found, for example,
in road traffic analyses where more cars cause disproportion-
ately higher costs �travel times�, usually modeled as convex
functions or in any electricity distribution network owing to
Ohm’s law. Convex cost functions also occur in many opera-
tions research applications as pointed out in �24�.

II. NUMERICAL RESULTS

Here we address the current distribution for the case cor-
responding to a general convex cost function of the circulat-
ing currents:

E��Ib�� = �
b

E��Ib�� , �1�

where the sum spans all network bonds b. In specific ex-
amples and numerical simulations we will consider the par-
ticular class of convex functionals with E��Ib��= �Ib�� /� and
��1. It will be shown, however, that our findings are valid
for an arbitrary convex cost function E with finite first de-
rivative which depends only on current strength. Notice that
for a nonlinear resistor network the transportation cost E is
proportional to the dissipated power only for the case
E��Ib��� �Ib��, as discussed in �25,26�. We will focus here
only on finite networks. The goal is to determine the current
probability distribution corresponding to the current configu-
ration �Ib�, which minimizes the total transportation cost E in
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the large size limit and its scaling behavior as a function of
the cost E��I��.

The minimization of E is subject to the local constraints of
current conservation at each node x: the sum of all currents
flowing into a node, taken as negative �positive� if directed
outward �inward�, must equal the injected nodal flux, ix �see
Fig. 1�. Because such constraint is linear in the Ibs, if E is a
convex function then it admits a single global minimum. The
existence and uniqueness of the solution for infinite networks
have been addressed elsewhere �25�.

As shown below, we find quite generally that the cumu-
lative probability distribution function �CPDF�, i.e., the frac-
tion of currents �Ib� larger than I, obeys the finite-size scaling

Pc�I�L� = F	 I

L

 ∀ d,� � 1, I � 0, �2�

where L is the linear size of the system and F is the scaling
function which at large x behaves as F�x��x1−� with �
= �2d−1� / �d−1� and limx→0 F�x�=1. This scaling form
holds independently of the particular convex cost function
considered. The standard scaling behavior for the case
E��Ib��= �Ib�� /� and ��1 �11,27� corresponding to a noncon-
vex cost function was instead found to be

Pc�I�L� = I1−�f	 I

Ld
 � � 1, I � 1 �3�

with limx→0 f�x�=const, i.e., a pure power law is obtained in
the large size limit ��=1.43�0.03 in d=2 and �=1 /2�. The
�=1 case was solved exactly in all dimensions using a map-
ping to reaction diffusion models �16� and �=2�d+1� / �d
+2� when the dimensionality is lower than the upper critical
dimension, dc=2, and �=3 /2 when d�2. In the present case
no upper critical dimension is found above which the expo-
nent remains the same.

Let us first describe the results of the numerical determi-
nation of current configuration minimizing Eq. �1� with
E��Ib��= �Ib�� and ��1 in a square lattice �i.e., d=2� of linear
size L where a uniform input at each site ix=1 is assumed �at
the sink where all currents are collected one has isink=−L2

+1�. We have used open boundary conditions for simplicity
because we do not expect that they influence the scaling
behavior in the large size limit. Because our problem reduces

to the minimization of a convex function of many variables,
we have used the nonlinear conjugate gradient method �28�.
The CPDF, Pc�I �L�, is plotted in Fig. 2 for lattices of differ-
ent sizes L and for �=2, the resistor network. It has the
following scaling behavior:

Pc�I�L� = �const for 0 	 I 	 L

I1−� for L 	 I 	 L2,
 �4�

with �=2.975�0.045. In the inset of Fig. 2 the CPDF is
plotted versus I /L for various L, showing that indeed Pc�I �L�
is a homogeneous function of the ratio I /L.

We have also performed numerical optimizations with dif-
ferent values of ��1 in d=2. Figure 3 shows pictures of the
optimized current configuration and the corresponding CP-
DFs are plotted in Fig. 4. Because data overlap, and although
the current configuration of global minimum for E varies
with � as shown in Fig. 3, it is suggested that the distribution
of currents is independent of the exponent � when ��1.
Additionally, we performed simulations on a 2−d triangular
lattice. The scaling behavior of the CPDF proved to be inde-
pendent of the underlying lattice’s structure.

III. ANALYTICAL RESULTS

We attack the problem analytically in the continuum limit
�this will be justified a posteriori�. We begin to illustrate the
procedure in detail for the case E��Ib��= �Ib�� /�; later on we
will extend it to the more general case.

Under the assumption that the current distribution, in the
large size limit, does not depend on the shape of the volume
we enclose our system in a region 
= �x : �x���L�, whose
volume will be denoted as �
�. We have defined the norm as
�x�������x����1/�. In the case �=2, 
 is a sphere of radius
R�L. Let j�x� be the current density at location x whereas

FIG. 1. The current conservation at node x. The sum of all
currents flowing into node x must be equal to the sum of currents
flowing out of node x : Ib1

+ Ib2
− Ib3

− Ib4
+ ix=0. FIG. 2. �Color online� CPDF for square lattices of different sizes

�L=201 �red circles�, 301 �green squares�, 501 �orange rhombi�,
701 �blue triangles�� and for �=2 �on log-log scale�. Fitting the tail
of the distribution with a power law yields a value for the exponent
��3, e.g., for L=301 we get �=2.975�0.045 �the exponent of the
power law was estimated using the method of maximum likelihood
�29,30�, and the error was calculated with the bootstrap method
�31��. In the inset we plot P�I �L� vs I /L, for all L’s and I’s consid-
ered above. The collapse of the curves indicates that the CPDF is a
function of the ratio I /L.
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i�x�= i0�1− �
��d�x�� is the external input. The Dirac delta
distribution �d�x� �a compact notation for the d-dimensional
notation �d�x����x1� . . .��xd�� represents the sink at the ori-
gin, whereas i0 is the uniform input. The components j��x�
��=1, . . . ,d� of the vector j�x� represent the currents along
the positive direction of coordinate axes at position x.

In the continuum case we define a cost functional analo-
gous to Eq. �1� as

E = �



ddx
�j�x���

�

�
. �5�

We search for the current configuration that minimizes the
cost function Eq. �5� with the constraint of the current con-
servation law, � · j�x�= i�x�, at each position, x. This is done
by introducing a Lagrange multiplier �potential�, V�x�, at
each position, x, and solving the following equation:

0 =
�

�j��x�	E + �



ddxV� · j
 =
j��x�

�j��x��2−� −
�

�x�

V�x� ,

�6�

where �=1,2 , . . . ,d. Because we expect that the CPDF does
not depend on boundary conditions in the large size limit, we
choose j�x�=0 at the boundary. We now assume that the
solution depends only on �x��: because E is convex, a solu-
tion with this property �if it exists� is the unique solution.
Using the above choice of the input currents �
ddxi�x�=0
and the conservation law � · j�x�= i�x�, by applying Gauss
theorem one gets that the boundary condition on the volume

 are automatically satisfied. Equation �6� together with cur-
rent conservation gives the following radial current density
as the optimal solution of Eq. �5�,

j�x� = x
i0

d
�1 − 	 L

�x��

d� . �7�

This solution is radially symmetric only with the metric de-
fined in terms of the � norm itself: thus the equicurrents lines
defined by �j��=constant are circles only for �=2, whereas
when �→ �1� they become squares with sides parallel to
the coordinate axis �45°-tilted squares�. The CPDF is given
by Pc�j �L�= �
�−1�
ddx�����j��x��− j� if we consider cur-
rents’ components, or by

Pc�j�L� = �
�−1�



ddx���j�x��� − j� �8�

if we consider current norm �32� ���z�=1 if z�0 and zero
otherwise�. It can be shown that asymptotic behaviors are the
same in both cases. Using the explicit solution Eq. �7� one
sees that Pc�j �L� depends only on the dimensionless ratio
j / �i0L� for all d. When d=2 Eq. �8� takes the simple closed
form:

Pc�j�L� = F	 j

i0L

, F�z� = ��1 + z2 − z�2, �9�

which is of the kind anticipated in Eqs. �2� and �4� with �
=3. The prediction Eq. �9� is shown in Fig. 4 compared to
CPDFs of numerical simulations calculated considering cur-
rents’ components. Even though we do not have the explicit
analytical form for d�2 it is not difficult to verify the
asymptotic behavior of Eq. �4�. Indeed for j /L�1 the lead-
ing contribution in Eq. �8� comes from �x /L���1 leading to
Pc�j �L���j /L��1−�� with �= �2d−1� / �d−1� for d�1. The
minimum �x�� is given by the underlying lattice spacing, say
a, and so, according to Eq. �7�, the maximum current is of
order ai0�L /a�d. Thus scaling holds in the region 1	 j / i0L
	 �L /a�d−1. The special case d=1 is trivial and one gets

FIG. 3. �Color online� Currents’ intensity in the optimal configu-
ration for different values of the exponent � and for the size L
=151 of a square lattice. From top left to bottom right: �=1.5, �
=2, �=4, and �=6. The petal-like arrangement of currents is not an
artifact of the underlying lattice geometry but arises from the de-
composition of current vectors into components. The direction of
currents is toward the center �directed networks�. The colors indi-
cate the intensity of currents: yellow: L� I, purple: L /2� I�L,
green: L /4� I�L /2, blue: L /8� I�L /4, black: L /16� I�L /8,
red: I�L /16.

FIG. 4. �Color online� Comparison of CPDFs of global mini-
mum configurations for the class of convex functionals �1� with
E��Ib��= �Ib�� /� and different � values: �=1.5 �red circles�, 2 �blue
squares�, 4 �green rhombi�, 6 �orange triangles�. The black solid line
is Eq. �9�, the CPDF of the analytic solution of Eq. �6�. The shapes
of the network boundaries in the various cases are chosen as ex-
plained in the text.
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Pc�j �L�=1−2j / �i0L���1−2j / �i0L��. Notice that in this case
the scaling region has shrunk to zero.

The case ��1 cannot be treated in the same way as
above. In fact in �13� it was shown that for functional �1�,
with E�z��z�, any current configuration, with currents being
different from zero only on the bonds of a spanning tree, is a
local minimum. For such solutions the second term in Eq. �6�
would diverge in correspondence of the bonds not belonging
to the spanning tree.

The above results can be generalized to the case of a
generic convex cost function with finite first derivative as
follows. While in the presence of an underlying network the
natural choice for the cost function is given by Eq. �1� in the
continuum there are at least two natural choices. The first
choice corresponds to E=�
ddx��E��j��x��� whereas the
second one is given by

E = �



ddxE��j�x���� . �10�

It can be shown that, although these two functionals have
different optimal configurations, their CPDF have the same
scaling behavior for small and large currents. For the previ-
ous case, E�z�=z� /�, the two choices coincide. The mini-
mum of the cost function, Eq. �10�, in the domain 

= �x : �x���L� and with the constraint of current conservation
proceeds as before. The stationarity conditions of the con-
strained problem are

E���j�x����
�j��x���−2

�j�x���
�−1 j��x� = V���x���

�x���−2

�x��
�−1 x�, �11�

where, as before, we have assumed that the potential V�x� is
a function of �x��. The solution is given by j��x�
=x�f��x��� with V�z� satisfying the equation E��f�=V��z�
�prime indicates the derivative with respect to the argument�.
Imposing current conservation we get f�z�= i0 /d�1− �L /z�d�
leading again to solution �7�. In turn this implies that the
scaling behavior of the CPDF as defined in Eq. �8� is inde-
pendent of the specific cost function as long as it remains
convex.

IV. INHOMOGENEOUS CASES

We have further tested the robustness of our results by
performing additional numerical simulations on systems sub-
ject to independent, equally distributed random current injec-
tion, i�x��0 at the nodes, or in the presence of nonuniform
conductivity where the cost function is given by E��Ib��
=�bkb�Ib�� where kb are random positive numbers.

As random distribution for injections and conductances
we have chosen a power law to ensure a high degree of
inhomogeneity. The simulation results of Fig. 5 show that the
leading trend for large currents remains the same as in the
uniform case studied above. Thus it is plausible that the scal-
ing behavior of the current distribution corresponding to the
optimal solution of the uniform case might remain the same
even for the more general case of a spatially varying convex

cost function. These results differ from the case of random
transportation dynamics �17–19� for which it was shown that
the uniform injection case is equivalent to our optimization
problem with �=1 �11�. Indeed for these models the scaling
behavior of the CPDF proves sensitive to the distribution of
the injections. However the present numerical results suggest
that this equivalence cannot be generalized to the random
injection case.

V. CONCLUSIONS

In summary, we have studied a class of optimal transpor-
tation networks with a convex cost function as given by Eq.
�1� whose prototype is E��Ib��=�b�Ib�� with ��1. The opti-
mal current configurations exhibit a probability distribution
function characterized by a scaling behavior given by Eqs.
�2� and �4�. The scaling exponent of the current distribution
proves robust with respect to �i� the choice of the transpor-
tation cost, as far as it is convex and has finite first deriva-
tives with respect to the currents; �ii� the distribution of in-
jected currents; �iii� position-dependent �convex� cost
functions. The analytical results show that the exponent of
the asymptotic power-law behavior of the current probability
distribution function varies continuously from 3 in two di-
mensions to 2 at infinite dimensions with no evidence of an
upper critical dimension.
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FIG. 5. �Color online� Comparison among the CPDF for the
uniform case �red circles� with two examples of the heterogeneous
conductivity �green rhombi� and injection cases �blue triangles� for
a L=151 lattice, with E��Ib��= �Ib�� /� and �=2. The probability dis-
tribution used to extract random resistances and injections is a
power law with exponent −1.5, at large values, in order to provide
a high degree of inhomogeneity. Ic is properly chosen to show that
the power law exponent is the same at large currents for the three
configurations. The shown straight line has slope −2 as our analyti-
cal results predict.
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